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Abstract. We investigate experimentally the deformation of acoustic wavefronts after crossing of a single,
isolated vortex in free space. The incident sound wavelength can be varied in a large domain. We study
the wavefronts at variable distance after transmission through the vortex, when the wavelength and the
vortex strength are varied. For small wavelength (λ � a, the vortex core size) our results are in very
good agreement with predictions and simulations based on geometrical acoustics principles. However,
as the sound wavelength increases to value comparable with the vortex diameter, the deformation of the
wavefronts show the development of scattering contributions, with characteristics in agreement with recent
theoretical and numerical studies.

PACS. 43.28.+h Aeroacoustics and atmospheric sound – 47.32.-y Rotational flow and vorticity

1 Introduction

We consider the propagation of acoustic waves of weak
amplitude in low Mach number flows. In this case, the
flow is unmodified by the presence of sound waves, but it
changes the sound propagation. It is a situation of theo-
retical interest for the understanding of wave and matter
interactions, and of practical importance because waves
can be used as probes for the study of media that interact
with them.

Sound waves are longitudinal vibrations; their propa-
gation in a fluid flow is affected by the presence of velocity
gradients [1]. For example, let us consider a plane acous-
tic wave propagating in direction k. A non-uniform ve-
locity field advects the wave and thus bends the direction
of propagation [3]. In addition, when the characteristic
length scale of the velocity gradients is of the order of the
sound wavelength, acoustic waves are scattered. A general
theory of sound scattering by velocity gradients has been
initiated by Lighthill [5]. Numerous subsequent develop-
ments have led to the realization that the leading contri-
bution to propagation and scattering effects comes from
the antisymmetric part of the velocity gradients, i.e. from
the vorticity of the flow [6]. Vortices tend to rotate the
wavefronts. In addition unsteady vortices act as sources of
sound and this provides a general scattering mechanism:
when a sound wave impacts a vortex it advects it harmon-
ically and additional sound is generated at the frequency
of the incoming wave.

a e-mail: pinton@ens-lyon.fr

There is thus a strong motivation to study the in-
teraction of a sound wave with a single isolated vortex
(core size a). In the case of small wavelength (ka � 1
where k = 2π/λ is the acoustic wave number), theoretical
work has been done using geometrical acoustics approx-
imations [2–4] and the associated numerical studies use
ray-tracing techniques [7,8]. When the sound wavelength
is much larger than the vortex core (ka � 1), analyti-
cal results have been obtained in the Rayleigh scattering
regime (cf. [9] and references therein). In the intermedi-
ate regime (ka ∼ 1), the scattering theory of Lighthill [5]
has been investigated mainly using the Born approxima-
tion, in the limit of far field calculations. Numerical results
in the case of a single vortex have been obtained in this
regime [9–11].

Experimentally, the scattering of acoustic waves has
been used to develop non-intrusive measurement tech-
niques for the study of complex [12,13] and turbulent
flows [14–17]. Several measurements of sound transmission
in the case of a plane sound wave impacting a single vortex
have already been obtained [8,18,19,21,22]. The situation
is analogous for the propagation of surface waves across a
vortex in shallow water [23–25]. The aim of this paper is
to complement these studies. We measure the evolution of
the wavefronts as a function of the distance downstream of
the vortex. We also take advantage that our experimental
setup in air allows us to vary continuously the frequency
of the incident sound over a rather wide range: ka covers
over a decade, ranging from 4 to 44.

The paper is organized as follows. In Section 2, we
give a brief presentation of the apparatus and measure-
ment technique (similar to that used in [21]). Section 3
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is devoted to measurements made in the regime ka � 1.
We study the influence of vortex geometry and strength,
we analyze measurements made at varying wavelengths
and also at several distances downstream of the vortex.
In each case, we note the good agreement between the
experimental observations and the results of ray-tracing
simulations. In Section 4, we report measurements made
when the wavelength of the incident sound is increased
so that ka becomes of order unity, and scattering effects
become clearly visible.

2 Experimental setup

2.1 Apparatus

The experimental flow belongs to the von Kármán ge-
ometry [26]: a strong large scale vortex is produced in
the gap between two coaxial corotating discs. Air is the
working fluid. The discs, with diameter 2R = 20 cm, set
H = 27 cm apart, are driven by DC motors at equal
rotation rate Ω ∈ [10, 50] Hz kept constant with a PID
(Proportional, Integral, Differential) feedback loop. This
apparatus is placed at the center of an experimental room
whose walls, 3 m away, are covered with sound absorbing
material. The flow is insensitive to these lateral bound-
aries. When the discs are corotating, a strong axial vortex
is formed [27]. In order to increase the vortex intensity
and stability, we have fitted the discs with a set of blades
and covered them with thin discs having a hole in their
center [21] – see Figure 1. In this manner we generate
vortices with typical strength γ � 1.5 m2 s−1, core size
a � 3 cm (at Ω = 30 Hz). These values are used from pre-
vious measurements using hot-wire anemometry [20,21];
a posteriori, they are also found to be consistent with our
acoustic measurements.

The aim of our acoustic measurement is to study the
transmission of a plane sound wave across an isolated vor-
tex. We generate an incident sound wave with a transducer
whose size is large compared to the sound wavelength and
we probe the acoustic field with a small size microphone.
In order to do so, a capacitive Sell-type transducer [28]
(square, edge size Λ = 16 cm) is used to insonify the
vortex. The sound frequency is adjustable in the range
νo ∈ [7, 100] kHz — cf. Figure 1a. The emitter is set at
a distance of 66 cm to the discs rotation axis. The sound
detector is a miniature B&K microphone (model 4138),
placed at an adjustable distance behind the vortex and
whose position is varied along a line parallel to the emitter,
in 0.5 cm steps controlled by a step motor — cf. Figure 1b.
The measured signal is amplified with a B&K preamplifier
model 2669B and processed using an EG&G-PAR lock-in
amplifier model 5302, to get the in-phase and 90 degrees
out-of-phase components. In order to monitor the position
of the vortex a local velocity measurement is performed,
using a TSI hot wire probe located 7 cm above the lower
disc, 4 cm from the rotation axis. All the signals are digi-
tized with a 23-bit HPVXI data acquisition device.
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Fig. 1. (a) Sketch of the experimental setup; emitter (1),
hotwire probe (2), driving disc (3), motor (4), microphone (5).
(b) geometry of the measurement: discs diameter 2R = 20 cm,
set 27 cm apart (2r = 2 cm is the diameter of the hole in
the thin disc that covers the blades). Distance of Sell emitter
to axis L1 = 66 cm, distance axis to microphone L2 is ad-
justable. The discs’ rotation rate Ω is adjustable in the range
[10 − 50] Hz.

2.2 Flow and measurement method

The swirling flow between coaxial corotating discs is made
of a large scale vortex upon which turbulent fluctuations
are superimposed [27]: the Reynolds number Re of the
flow based on the discs’ rim speed (or on the vortex circu-
lation) is of the order of 105. Velocity measurement made
in its neighborhood show a Kolmogorov spectrum, with
motion at all scales, from the vortex characteristic size a
to the viscous dissipation length η � aRe−3/4 [29]. Given
the typical values of our experiments, this yields a range
of scales from η � 300 µm to a � 3 cm – the Taylor
microscale of the flow is of the order of 7 mm. In com-
parison, the range of accessible sound wavelengths in our
experiment is λ = c/ν0 ∈ [3.5, 50] mm (we use the value
c = 340 m/s for the speed of sound). The aim of our work
is to study the action of the large scale main vortex flow
on the incoming sound wave; the effect of the turbulent
fluctuations must be averaged out. Note that the flow does
not have a spectral gap in space or time scales, that would
allow one to define a slowly evolving mean flow plus rapid
fluctuations. However, the turbulent fluctuations are in-
coherent with respect to the large scale flow: averaging
realizations of the flow yields the same result as low-pass
filtering the velocity field.

Finally, one must take into account the slow preces-
sion motion of the vortex [27,30]. In our case the vortex
precesses with a period of about 2 seconds, on a circular
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Fig. 2. Velocity ‘clock’ signal (Ω = 30 Hz). The inset shows the
coherent average of one quasi-period of the signal. Black dots
mark three particular positions of the vortex in its precession
motion, discussed in Section 3.

motion of radius � 1.5 cm about the discs axis. This mo-
tion is only quasi-periodic: we monitor it using a hot wire
probe located nearer to one disc and roughly on the orbit
of precession – see Figure 1. The resulting velocity signal
is used as a ‘clock’ to compute an average of the pres-
sure field, synchronous to the position of the vortex [27].
A characteristic signal measured by the hot wire probe is
drawn in Figure 2. One clearly notes the quasi-periodic
behavior of the vortex precession. Large fluctuations are
also observed that are of the order of the signal magni-
tude. However, these fluctuations are wiped out when a
box-car averaging is computed (see Fig. 2 (inset)). Once
the average signal is determined, a clock of the precession
is obtain and averaging of the sound signal can be done
for different vortex position.

Regarding the sound field measurements, we continu-
ously insonify the flow at a fixed frequency with the Sell
transducer and we use the microphone to record the pres-
sure field downstream of the vortex (here and in the fol-
lowing, “downstream” refer to “in the incident direction,
after propagation through the vortex”). At each location,
the pressure field component at the frequency of the sound
(phase and amplitude) is coherently averaged over 100 pe-
riods of rotation of the vortex, in the manner described
above (the phase reference is that of the incident sound).
Note that the time of flight of the sound between emitter
and microphone is of the order of a few milliseconds: this
is fast enough for the large scale flow to be considered
“frozen”, but not for the small scale fluctuations which
have a Kolmogorov time of about 300 µs. We then com-
pare the signal with the reference measurement made in
the absence of flow. Acoustic fields (amplitude or phase)
are computed as the ratio of the pressure signal detected
after transmission through the vortex to the pressure sig-
nal recorded in free space when the vortex flow is absent.

3 Measurements at small wavelength

3.1 General features

We first show in Figure 3 the raw profiles, as measured
along a line parallel to the emitter plane, both when the
fluid is at rest and when the vortex flow is generated by
the rotation of the discs. The measurement is made at
ν0 = 40 kHz, corresponding to ka = 22.1, a situation that
is expected to be within the small wavelength approxi-
mation. The amplitude profile in the absence of the flow
has the characteristic shape of a diffraction pattern due
to the emitter finite size, in the near field region (here
(L1 + L2)λ/Λ2 � 0.3 < 1). As seen in the figure, this
pattern is rotated and altered by the vortex flow. The
phase profile, defined as the phase difference with respect
to emitter signal, also show the oscillations characteris-
tic of diffraction. When the vortex is present, one clearly
identifies the advancing and retardating effects on each
side of the vortex axis.

In order to incorporate the diffraction effects, the pro-
files measured when the fluid is at rest serve as references
against which the transmission through the vortex flow is
studied: we compute, at the same location in space, the ra-
tio of the amplitude and phase measured when the vortex
is generated (triangles in the figure) to the correspond-
ing amplitudes and phases recorded in the absence of flow
(circles in the figure).

Using the data shown in Figure 3, one computes the
relative phase and amplitude variations shown in Figure 4.
Let us first discuss the phase variation. It is advanced
when the vortex velocity is in the direction of propagation
of the sound wave, and it is retarded on the other side. On
dimensional grounds one can show that the phase jump is
related to the circulation of velocity about the vortex core,
i.e. the vortex strength γ, as [8,21,23]

∆Φ =
2πν0γ

c2
. (1)

This expression relies on the assumption that the flow
about the vortex is axisymmetric, in order to relate the
phase jump on each side of the vortex to its circula-
tion (or strength). It can be derived rigorously in the
limit of geometrical acoustics [25], as will be indicated in
the next section. Schematically, it traces back to the re-
mark that the phase shift corresponds to a displacement
∆x of the acoustic wavefront so that c∆x = γ; hence
∆φ = 2π∆x/λ = 2πν0γ/c2. In our setup, one expects
phase shifts of the order of a few radians, as observed.

We now turn to the amplitude profile in Figure 4. One
observes that the amplitude is smaller than that of the
incident sound on the side of the vortex where the phase
is advanced, while it is increased on the other side where
the phase is retarded compared to the propagation in the
fluid at rest. In the context of ray propagation, this can
be viewed as defocusing and focusing effects (respectively)
downstream of the vortex. Indeed, as can be shown in the
small wavelength limit [3,4], the presence of the vortex
tends to bend the acoustic rays proportionally to the local



232 The European Physical Journal B

-20 -15 -10 -5 0 5 10 15 20
Microphone position [cm]

-4

-2

0

2

4

P
ha

se
 [r

ad
ia

n]

-20 -15 -10 -5 0 5 10 15 20
Microphone position [cm]

0

10

20

30

40

A
m

pl
itu

de
 [A

.U
]

Fig. 3. Raw measurements. (top) amplitude profile down-
stream of the vortex along a line parallel to the emitter, with-
out flow (◦) and with the vortex flow (�); (bottom) corre-
sponding phase profiles, same symbols. (Ω = 30 Hz, ν0 =
40 kHz, L2 = 33 cm). The curves are computed as a coher-
ent average as detailed in Section 2.

vorticity of the flow. With a vorticity distribution being
a bell-shaped curve peaking on the vortex axis, one thus
finds that the rays are brought together on one side of the
vortex (focusing) and set further apart on the other side
(defocusing).

We note here that the oscillations on the sides of the
phase (and amplitude) profiles have a complex origin that
is hard to attribute to a single physical effect; they have
the same spatial period as the one due to the emitter
diffraction pattern and may be thus due to any small dis-
placement between the measurement with and without the
vortex flow (the reflection of sound on the rotating discs
may cause such an effect). On the other hand, we cannot
rule out scattering effects which could already be present,
although ka > 10 in the measurement reported here.

We also observe in Figure 5 that the location of zero
phase shift, directly aligned with the vortex center line,
varies with the position of the vortex along its orbit of
precession. Indeed, in Figure 5, the three curves corre-
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Fig. 4. Typical acoustic measurement, amplitude (circles) and
phase (triangles) variations. (Ω = 30 Hz, ν0 = 40 kHz, L2 =
33 cm). After the coherent average processing, the points are
computed as the ratio of the profiles with and without the
vortex flow, as in Figure 3.
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Fig. 5. Phase change of the sound wave downstream of the vor-
tex, at the three positions along its precession motion marked
in Figure 2.

spond to the three vortex positions marked in Figure 2
(inset).

Compared with other experiments using water as the
working fluid [8], the phase jump is quite large. This can
be understood if one re-expresses equation (1) as ∆Φ =
(a/λ)M , where M = u0/c is the flow Mach number and a
the vortex core size : higher Mach numbers can be achieved
in gases than in liquids; in our case the Mach number M is
about 0.1. At the Mach numbers reached in air, amplitude
variation as large as 50% of the reference amplitude can
be observed – see Figure 4. The other advantage of using
gases is that sound frequencies are lower – for a given value
of ka – so that one can use sampling circuits that offer a
high amplitude resolution.
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3.2 Comparison with ray-tracing

In the geometrical regime, the sound wave is locally ad-
vected by the vortex and the equation of propagation can
be written as [2]:

(∂t + uo∇)2 ρ′ − c2∆ρ′ = 0, (2)

where u0 is the (slow varying) flow velocity and ρ′ is the
density fluctuations associated with the sound wave. For
a sound wave at wavenumber k, one thus obtains for the
group velocity:

V = c
k

k
+ u0, (3)

from which the variation of the ray direction and phase
along its path can be computed. For example, in the small
Mach number limit, one obtains with respect to propaga-
tion in the fluid at rest, a phase variation of the acoustic
wave along a path joining the transmitter (T) and the
receiver (R):

δΦTR =
2πν0

c2

∫
TR

u0(r)dr (4)

from which one recovers the expression in equation (1)
under the assumption of axisymmetry.

Numerically, straight rays are propagated from the Sell
emitter in all directions and their phase are unrolled along
the rays. Then, the amplitude and the phase of the wave
are calculated in each measurement point by summing all
the rays that hit this point. Typical experimental and nu-
merical results, drawn in Figure 6, confirm the correspon-
dence of the advance of phase and the defocusing of ampli-
tude. In Figure 6, we also compare our experimental data
with a ray-tracing calculation made with a Rankine vortex
having the same parameters as measured for the experi-
mental vortex — in the case (ν0 = 40 kHz, Ω = 30 Hz,
L2 = 33 cm) which corresponds to the geometrical acous-
tics regime (the sound wavelength is a third of the vortex
core size). One observes a very good agreement between
the computed and measured profiles.

The profiles shown in the figures are computed as the
ratio of the acoustic signal in the presence of the vor-
tex to the measurement in free space in its absence. We
have checked numerically that the distribution of emis-
sion at the Sell transducer (Gaussian or Flat distribu-
tion for example) does not modify the amplitude and
phase profiles (except for the amplitude of the oscilla-
tions on the sides). We also note that the maximum an-
gle θ of deflection of an acoustic ray can be estimated as
θmax � arctan

(
γ/4π2ac

) � 3 × 10−3 rad, which is quite
small in our experiment where the maximum downstream
distance L2 is 1.2 m and the acoustic field is measured in
5 mm steps.

3.3 Vortex geometry

As stressed above, the ray trajectory depends on the struc-
ture and geometry of the vortex field. In Figure 6, the

-20 -15 -10 -5 0 5 10 15 20
Microphone position [cm]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
ha

se
 [r

ad
ia

n]

simulation
experiment

-20 -15 -10 -5 0 5 10 15 20
Microphone position [cm]

0.4

0.6

0.8

1

1.2

1.4

1.6

A
m

pl
itu

de

simulation
experiment

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

Fig. 6. Ray tracing compared to experimental signal, in the
case (Ω = 30 Hz, ν0 = 40 kHz, L2 = 33 cm). The numerical
vortex has a Rankine distribution with the same core size and
strength as the experimental one.

vortex is assumed to be a Rankine type vortex:

V (r) =

{
γ

2πa . r
a if r � a

γ
2π .1r otherwise

(5)

with a core size a � 3 cm and a strength γ � 1.4 m2 s−1.
In order to test the dependence of the acoustic profiles

with different vortex structures, we have also computed
other model distributions, such as the Hallock-Burmnham
or Lamb types:

VHallock-Burmnham(r) =
γ

2π

r

r2 + a2
, (6)

VLamb(r) =
γ

2πr

(
1 − e−1.2526( r

a )2)
. (7)

The acoustic profiles that these vorticity distributions pro-
duce (using the same characteristics core size and strength
(γ = 1.4 m2s−1, a = 3 cm)) are shown in Figure 7.

One observes little differences on the sides of the acous-
tic field and only slight differences in the center core re-
gion — the central peaks are slightly lower in the case
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Fig. 7. Acoustic profiles obtained from ray-tracing using sev-
eral vorticity distributions. In each case the parameters are
the experimental ones: γ = 1.4 m2s−1, a = 3 cm, ν0 = 40 kHz,
L2 = 33 cm.

of the Hallock-Burnham vortex than for the Rankine or
Lamb vortices. These differences are of the same order
as the difference between the experimental measurement
and the ray-tracing results. It means that, at least with
the statistics available in the measurement reported here,
one will not gain an insight as to the precise vorticity
distribution which best corresponds to the vortex gener-
ated experimentally, but global features such as core size
and strength are readily measured. In the same manner,
acoustic scattering effects which may be present in the
measurement but are not taken into account by the sim-
ple ray-tracing modeling used here are difficult to assess in
this small wavelength regime. As we will see in Section 4,
the scattering effects become much larger as the sound
wavelength is increased.

Finally, we have explored numerically the effect of
varying the vortex core size. In Figure 8, acoustic pro-
files have been computed for Rankine vortices of constant
strength (γ = 1.4 m2s−1) and core sizes from a = 2 cm
to a = 4 cm. One observes that the effect is very small
on the phase jump. This is again consistent with the fact
that the phase jump is set by the vortex strength. However
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Fig. 8. Impact of the core size on the numerical ray-tracing;
(γ = 1.4 m2s−1, ν0 = 40 kHz, L2 = 33 cm).

it produces a noticeable change in the slope of the phase
variation about the vortex axis and a slight enlargement of
the central zone as a increases. The influence of the core
size is more pronounced on the amplitude profile where
both the width of the central region and the magnitude
of the focusing/defocusing effect increase by about 30%
when the core size is doubled. Overall the method allows
an estimation of the vortex core size with a 10% error, a
noteworthy precision considering the high degree of tur-
bulence of the flow.

3.4 Vortex strength

One parameter of the vortex which can be easily varied
experimentally is the vortex strength. For a constant rota-
tion rate, one can change the axial pumping in the flow by
varying the diameter of the holes that cover the driving
discs (see Fig. 1). Figure 9 shows phase profiles for two
values of the hole diameter, 2r = 2 cm and 2r = 5 cm. We
observe that the phase jump increases with r. This implies
an increase of the strength of the vortex. Note that as the
vortex core size does not change appreciably, it is actually
the angular speed about the vortex axis which increases
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Fig. 9. Influence of the diameter of the disc’s holes on the
phase signal (Ω = 30 Hz, ν0 = 40 kHz, L2 = 33 cm).

with the size of the pumping hole in the driving discs. For
reasons of stability of the vortex, the diameter 2r = 5 cm
is used in the rest of our measurements.

In fact, the most convenient way to change the strength
of the vortex is to operate with a constant geometry and
to vary the rotation rate Ω of the driving discs. We have
verified that the magnitude of the phase jump, hence the
vortex strength is also proportional to Ω.

3.5 Influence of the sound wavelength

We have varied the frequency of the incoming sound wave
in the range ν0 ∈ [40, 80] kHz, corresponding to wave-
lengths varying between 4 mm and 8 mm. Compared with
the vortex core size (a � 30 mm), the 4 mm wavelength is
well within the geometrical approximation, and the 8 mm
wavelength is an upper limit, as we will discuss in more
details in the next section.

We show in Figure 10a the phase profiles when ν0

is varied and in Figure 10b the evolution of the corre-
sponding acoustic amplitudes. The overall magnitude of
the phase jump as a function of the sound frequency is
plotted in the inset. As expected from equation 1, the
phase jump varies linearly with increasing sound frequen-
cies. The slope of 7.7× 10−2 rad kHz−1 yields an estimate
of the vortex strength γ � 1.4 m2 s−1, in very good agree-
ment with the numerical ray-tracing estimation. Although
the measurements at low frequency certainly cannot be
described by a geometrical acoustics approach, they are
included in the inset of Figure 10a because the evolution
of the phase jump is aligned on the same straight line as
observed at high frequencies.

Regarding the impact of the wave frequency on the am-
plitude signal, the observations are more complex. In fact,
we observe (see Fig. 10b, inset) that the weight of the fo-
cusing and defocusing effects depends weakly, if at all, on
the wave frequency. In addition, the width of the central
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Fig. 10. Influence of the sound frequency on the phase (a)
and amplitude (b) profiles. (Ω = 30 Hz, L2 = 33 cm). The
inset in (a) shows the variation of the total phase jump with
the sound frequency; the straight line is a best linear fit with
slope p � 7.7× 10−2 rad kHz−1. Sound frequencies are 40 kHz
(plus), 50 kHz (stars), 60 kHz (circles), 70 kHz (crosses) and
80 kHz (squares).

zone for both phase and amplitude signals are almost con-
stant when the wavelength is varied. These observations
are extremely consistent with the geometrical acoustics
approximation: the phase varies with the wavelength but
not the amplitude which is determined by the ray equa-
tion in which the wavelength does not explicitly enter.
Note that for the smallest wavelength (about 4 mm), the
turbulent fluctuations in the vortex flow could play a role;
the fact that they are averaged out in the measurement is
an indication that they are incoherent with the large scale
dynamics.

3.6 Variation with the downstream distance

We have used the ray-tracing algorithm to compute the
sound phase and amplitude profiles in a domain that cor-
responds to the measurement volume in the experiment.
The results are shown in Figures 11 and 12. One can see
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Fig. 11. Phase variation over the whole domain (γ =
1.4 m2 s−1, a = 3 cm, ν0 = 40 kHz).

Fig. 12. Amplitude variation over the whole domain (γ =
1.4 m2 s−1, a = 3 cm, ν0 = 40 kHz).

that in the geometrical acoustics regime, the phase jump
is marked downstream of the vortex as a dislocation in
the wavefront (as originally pointed out by M. Berry and
co-workers [23]), save for a narrow central region which
broadens as L2 increases. The phase jump thus should
not depend on the distance from the vortex axis where the
measurement is made. On the other hand, the width of the
amplitude fluctuations, broadens slowly in the shadow of
the vortex.

To test experimentally these predictions, we have in-
vestigated the sound field profiles for L2 ∈ [23, 53] cm. We
observe in Figure 13 that the phase jump is indeed inde-
pendent of the distance L2, while there is a slight increase
of the focusing-defocusing effect with L2. For both phase
and amplitude signals we note an increase of the central
zone width as predicted by the simulations. When mea-
sured on the amplitude the width of the central zone is
observed to vary as 1/

√
L2.
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Fig. 13. Phase and amplitude signal over the distance L2 away
from the vortex (experiments), (Ω = 30 Hz, ν0 = 40 kHz). The
inset show the variation of the phase and amplitude jumps
with L2.

4 Scattering effects

In order to investigate effects outside the geometrical
acoustics regime, we have repeated the experiments de-
scribed above, when the frequency of the incoming sound
is lowered. We have performed measurements with ν0

down to 7 kHz, i.e. for wavelengths as large as 5 cm, larger
than the vortex core.

We show in Figure 14 the measured amplitude and
phase variations downstream of the vortex for an incident
sound at 15 kHz. One has ka � 7, so that one cannot a
priori expect to be in the geometrical acoustics regime.
Indeed, one observes clear deviations with respect to the
behavior shown in Figure 4 for a small wavelength incident
sound. Both the amplitude and the phase have variations
of order one over the entire extent of the microphone po-
sitions. The order of magnitude of the phase jump is still
correctly given by the dimensional argument, but this is
mainly due to the fact that the phase is locked to the cir-
culation of the vortex [23]. However, the amplitude has
large oscillations, indicating that the angle over which the
wavefront is disturbed is very much increased compared
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Fig. 14. Amplitude (dashed line) and phase (solid) variations,
for an incident sound at a frequency equal to 15 kHz, corre-
sponding to a wavelength λ = 2.3 cm.

to the geometrical acoustics case. Overall, these effects
are a clear indication of diffraction phenomena, i.e. of the
scattering of the incident sound by the vortex flow.

The understanding of observations in this regime is
much more complex than in the small wavelength limit.
Our observations are not made at very large sound wave-
lengths where Rayleigh scattering theories can be asymp-
totically derived, but in the intermediate regime where
the flow and sound waves have comparable characteris-
tics lengths. In this case, a Born approximation leads to a
wave equation such as [6]

(∂t + u0∇)2 ρ′ − c2∆ρ′ = −2ρ0 (∂ju0,i)
(
∂iu

′
j

)
(8)

where u0 is the vortex flow and u′ the sound perturba-
tion. In the right-hand side term, the acoustic field is often
replaced by the incident field. However, it has been em-
phasized recently [9,11] that in the case of vortices with
a non-zero circulation, the long-range azimuthal velocity
also advects the incident sound wave and this yields an
additional contribution to the scattering field.

In the following we report measurements in which the
wavelength and distance to the vortex have been varied
and we compare to some analytical and numerical results.

4.1 Evolution with the sound wavelength

In order to study the transition away from the geometrical
acoustic regime, we have made measurements at varying
incident sound frequencies, ν0 ∈ [7− 50] kHz, correspond-
ing to acoustic wavelength ranging from 5 cm down to
7 mm. The results are shown in Figure 15, and for com-
parison, we display in Figure 16 the corresponding profiles
obtained from the ray-tracing simulation.

The agreement between the measured and computed
profiles deteriorates as the sound frequency is lowered.
The magnitude of the phase jump is correctly given by
the dimensional argument (∆φ = 2πν0γ/c2), but one can

−20 −15 −10 −5 0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Microphone position (cm)

P
ha

se
 (

ra
di

an
)

nu = 7 kHz 
nu = 15 kHz
nu = 23 kHz
nu = 30 kHz
nu = 40 kHz
nu = 50 kHz

−20 −15 −10 −5 0 5 10 15 20
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Microphone position (cm)

A
m

pl
itu

de

0 20 40 60 80

5

15

25

nu [kHz]w
id

th
 c

en
tr

al
 a

re
a 

[c
m

]

Amplitude
Phase

(a)

(b)

Fig. 15. Phase and amplitude profiles for ν0 ∈ [7 − 50] kHz.
(Ω = 30 Hz, L2 = 33 cm). Experimental measurements.

observe in the measurement of the phase large side oscilla-
tions that are not present in the simulation (e.g. profiles at
ν0 = 15, 23 kHz). The value at which the phase saturates
broadens as the incident wavelength is increased. The am-
plitude profiles show even more differences between the
experiment and ray-tracing simulations, at low sound fre-
quencies (less than 30 kHz). The experimental amplitude
variations are larger, and broader, than what is predicted
by geometrical acoustics arguments. In fact, instead of de-
creasing steadily with ν0 as in Figure 16b, the amplitude
excursion in Figure 15b remains of the order of 50% of the
incident sound amplitude. The width of the main scatter-
ing lobe, measured as the distance between the local max-
imum and minimum amplitudes about x = 0, decreases
sharply with the incident sound wavelength (see inset of
Fig. 15). The oscillations in the amplitude have a spatial
period that increases with ν0. The observations of increas-
ing side oscillations and slow amplitude growth with ν0 are
in qualitative agreement with the available analytical far
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Fig. 16. Phase and amplitude profiles, obtained from ray-
tracing simulations, with the same parameters as in Figure 15.

field calculations [11] and with the direct numerical sim-
ulations [9,10] which take into account the scattering by
vorticity.

4.2 Variation with downstream distance

Measurements have been performed at increasing dis-
tances downstream of the vortex core, and plotted in
Figure 17 (the incoming sound frequency is 20 kHz). In
contrast with measurements made at small wavelengths,
one observes that the width of the central zone increases
with L2. The variation is linear both for the phase and
for the amplitude, and it yields an estimate of the main
scattering lobe, ∆θ � 19◦, for the measurement at ν0 =
20 kHz in Figure 17. This value is in agreement with the
numerical results in [9,11] when the sound wavelength
is of the order of the vortex core size (at ν0 = 20 kHz,
λ = 1.7 cm, i.e. about half of the vortex core diameter).
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Fig. 17. Variation of the acoustic profiles with the distance of
measurement to the vortex core (Ω = 30 Hz, ν0 = 20 kHz).

Another feature is that the measured sound amplitude
increases with L2. In Figure 17, the net excursion is about
60% of the incident sound amplitude at L2 = 33 cm, and
it reaches 100% at L2 = 110 cm. This is in qualitative
agreement with numerical simulations by Berthet [9], but
at odds with the study of Ford and Llewellyn-Smith [11]
which shows that the scattering cross-section saturates in
amplitude as soon as the distance to the vortex exceeds
about 10 wavelengths. This matter certainly deserves fur-
ther investigations. In particular it would be desirable to
form vortices with a much smaller core size in order to be
able to explore the regime λ � a.

5 Concluding remarks

We have studied the propagation of a monochromatic
sound wave through an isolated vortex, in a setup that
allows to vary the ratio of the incident sound wavelength
to vortex characteristic size. For small wavelengths, our
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results are in good agreement with the modeling of prop-
agation using geometrical acoustics approximations. For
instance the phase shift on either lateral sides of the vor-
tex is independent of the distance of measurement from
the vortex; the amplitude excursion is independent of the
sound wavelength. At larger wavelength, scattering effects
are clearly identified. Measurement of some features such
as the width of the scattering angular lobe are in agree-
ment with recent numerical and analytical work. However
a complete study of the scattering regime would require
measurements at larger wavelength. Experimentally it is
not practical to reduce further the frequency of the in-
cident sound (below 7 kHz ordinary laboratory noise be-
comes a concern). A solution would be to be able to en-
gineer vortices with a much smaller core size; in air that
would result in length scales that would be inside the iner-
tial range of turbulence, as the vortex cannot be laminar
if its strength is to remain significant. Such small vortices
imbedded in turbulent flows are not stable, making their
study much more difficult.
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21. R. Labbé, J.-F. Pinton, Phys. Rev. Lett. 81, 1413 (1999)
22. M. Oljaca, X. Gu, A. Glezer, M. Baffico, F. Lund, Phys.

Fluids 10, 886 (1998)
23. M. Berry, R.G. Chambers, M.D. Large, C. Upstill, J.C.

Walmsley, Eur. J. Phys. 1, 154 (1980)
24. F. Vivanco, F. Melo, Phys. Rev. Lett. 85, 2116 (1998)
25. C. Coste, F. Lund, M. Umeki, Phys. Rev. E 60, 4908,

(1999); C. Coste, F. Lund, Phys. Rev. E 60, 4917 (1999)
26. P.J. Zandbergen, D. Dijkstra, Ann. Rev. Fluid Mech. 19,

465 (1987)
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